

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Infrared Spectra and Vibrational Features of Acetophenones in the Range 700-50 cm⁻¹

S. Ghergetti^a; S. Giorgianni^a; A. Passerini^a; G. Spunta^b

^a Department of Organic Chemistry, University of Venice Calle Larga, Venezia, Italy ^b Laboratorio dei Composti del Carbonio Contenenti Eteroatomi, C.N.R., Emilia, Italy

To cite this Article Ghergetti, S. , Giorgianni, S. , Passerini, A. and Spunta, G.(1975) 'Infrared Spectra and Vibrational Features of Acetophenones in the Range 700-50 cm⁻¹', *Spectroscopy Letters*, 8: 6, 391 — 397

To link to this Article: DOI: 10.1080/00387017508067339

URL: <http://dx.doi.org/10.1080/00387017508067339>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

INFRARED SPECTRA AND VIBRATIONAL FEATURES
OF ACETOPHENONES IN THE RANGE 700-50 cm^{-1}

S. Gheresetti, S. Giorgianni and A. Passerini
Department of Organic Chemistry; University of Venice
Calle Larga - S. Marta 2137, Venezia (Italy)

G. Spunta
Laboratorio dei Composti del Carbonio Contenenti Eteroatomi
C.N.R., Ozzano Emilia (Italy)

Although various structural properties can be determined by investigating the far-infrared, the lack of systematic results for most classes of organic molecules seems to hinder a number of workers from undertaking studies in this region. As a part of an extensive investigation in this field (1), we report here the data and our interpretation for a group of acetophenones.

The spectra, from 700 to 400 cm^{-1} , were recorded on Perkin-Elmer 225 and 180 Spectrophotometers, and from 400 to 50 cm^{-1} on a vacuum operating Hitachi-Perkin Elmer F.I.S. 3 spectrophotometer (for further details see (2,3)). Most of the compounds were commercially available; a few were synthesized by conventional methods. All were purified by vacuum distillation and/or vacuum sublimation. Sample purity was checked spectroscopically.

The first studies by Garrigou-Lagrange et al. (4), and Lebas (5) were limited to the molecule of acetophenone. Later, Mross and Zundel (6) presented results also for its d_5^- and d_8^- derivatives.

The far-infrared data of the acetophenones investigated are presented in tables 1 and 2: the wavenumbers are for 0.4M solutions in CCl_4 . For a better understanding, the vibrational absorptions were divided into two categories: a) those somewhat related to the motions of the benzene ring and b) those internal of the substituent groups. It should be noted that the interpretation made here shows a rather consistent pattern throughout the series of compounds.

a) Ring vibrations: These vibrations comprise in-plane and out-of-plane skeletal and X-sensitive modes. Their assignment was mostly made with reference to the spectra of simpler disubstituted benzene derivatives, for some of which quantitative results are now available (7-10). The assigned frequencies are given in table 1 where the Wilson's numbering convention was used (10).

Three out-of-plane skeletal modes (4, 16a and 16b) which are not sensitive to the mass of the substituents and two X-sensitive modes ($\gamma_{\text{C-X}}$ and $\gamma_{\text{C-Y}}$; X = -Cl, -Br, -CH₃, -OCH₃, -SCH₃; Y = -COCH₃) were observed and identified in the spectral range investigated.

The assignment of the in-plane vibrations (radial skeletal modes 1, 12, 6a, 6b, and X-sensitive modes $\nu_{\text{C-X}}$, $\beta_{\text{C-X}}$, $\beta_{\text{C-Y}}$) however does not appear so straightforward, since as result of strong coupling effects no simple pattern can be predicted. For several compounds the actual values of the motions labelled 1, 12, and $\nu_{\text{C-X}}$ were not reported since they are located above 700 cm^{-1} . For the same reason the column related to the $\nu_{\text{C-Y}}$ stretching mode was omitted. The two X-sensitive bending vibrations, i.e. $\beta_{\text{C-X}}$ and $\beta_{\text{C-Y}}$, were observed in the range 320-140 cm^{-1} . It may be noticed that only one of these (i.e. $\beta_{\text{C-Y}}$) shifts when the carbonyl group is H-bonded (see below). Therefore it seems that in acetophenones the $\beta_{\text{C-Y}}$ vibration predominantly involves the in-plane bending mode of the -COCH₃ group while

TABLE I
Ring and X-sensitive Vibrations for Substituted Acetophenones in the Range 700-50 cm^{-1}

X=	in-plane vibrations						out-of-plane vibrations			
	1	12	6a	6b	$\nu_{\text{C-X}}$	$\beta_{\text{C-X}}$	4	16a	16b	$\gamma_{\text{C-Y}}$
H	§	§	§	617m	221s, b	(228)	688s	415w	458w, b	150w, b
4·Cl-	§	524s	621m	628sh	316m	305m	181s	(192)	442w	465m
4·Br-	§	496m ⁺	607s	627m	248m	287s	162s	(170)	421m	453m
4·CH ₃ S-	§	525m	618s	631w	296m	234m, b ⁺	154m	(164)	440w	468m
4·CH ₃ -	671s	568s	353s ⁺	638m	§	320w	197s	(210)	691m	460m, b
4·CH ₃ O-	674w	563s	336m ⁺	632m	§	290m	177s	(190)	437w	458w
3·Cl-	673s	§	416m ⁺	§	315s	166s	(176)	683s	416m ⁺	467m, b
3·Br-	660s	§	384m	§	306m	286s	142s	(152)	682s	415w
3·CH ₃ S-	672s	§	§	314m	245m, b	144m	(153)	686s	418w	462sh
3·CH ₃ -	§	§	380w, b	522m	§	310w, b	193m	(200)	690s	412w
3·CH ₃ O-	698s	§	398w	514m	§	270w, b	165s	(174)	689s	461w
2·Cl-	§	§	669m	437m	293m	201m	(208)		395w	465m
2·Br-	§	§	653s	394s	297m	264w, b	184m	(192)	690w	452m
2·CH ₃ S-	§	§	667m	318m	258m, b	188s	(198)	680w	460w	210w
2·CH ₃ -	§	§	560w	386m	§	265w, b	226s, b ⁺		405w	457m
2·CH ₃ O-	§	§	532m	388w	§	260sh	204w		458w	225w

§ values out of the range investigated ⁺ frequency used again

TABLE 2
Internal Vibrations of the $-OCH_3$, $-SCH_3$, $-OCH_3$ Groups and few other Spectral Features Related to Substituted Acetophenones in the Range 700-50 cm^{-1}

X=	β_{CO}	β_{CCC}	β_{COC} β_{CSC}	γ_{CO}	τ_{OCH_3} τ_{SCH_3}	ν_{σ}
H-	587s	368m		505w	75m, b	125w
4·Cl-	586s				85m, b	120m, b
4·Br-	586s				80m, b	121m, b
4·CH ₃ S-	588s	364m	260w, b	517m	98m, b [§]	124m
4·CH ₃ -	588s	353s [§]	520w	500m	75m, b	126m, b
4·CH ₃ O-	589s	577s [§]	278m, b [§]	100w	80w, b	125w, b
3·Cl-	610m	596s	366m	490sh	75m, b	116m, b
3·Br-	605sh	594s	586s	374sh	485w	75m, b
3·CH ₃ S-	613w	596s	587s	342w	475w, b	119w
3·CH ₃ -	608m	599s	587s	350m	485sh	75m, b
3·CH ₃ O-	600m	588s	564s	363m	505sh	114m, b
2·Cl-	593s	533w	361m	285m, b	490w	85m, b
2·Br-	592s	531w	368m, b	368m, b		120m, b
2·CH ₃ S-	597s	545w, b	352m	278m, b	100m, b	116w, b
2·CH ₃ -	602s				124m	124m, b
2·CH ₃ O-	595s				65m, b	127m, b

[§] frequency used again [†] see ref. (2) ϕ see text

the expected coupling with the β_{C-X} mode (10) is probably only feeble.

b) Internal vibrations of polyatomic substituent groups: The wavenumbers of the vibrations arising from the $-COCH_3$ group as well as from other polyatomic groups ($-OCH_3$, $-SCH_3$) and lying below 700 cm^{-1} are listed in table 2. Since no vibrational mode of the benzene nucleus was left unidentified (see above) there is no doubt in assigning to the $-COCH_3$ group three bands at about 580, 490, and 360 cm^{-1} which were observed throughout the compounds investigated. By taking as reference the spectrum of acetone (bands near 530 , 490 and 390 cm^{-1}), such absorptions should be related to two in-plane (β_{CO} , β_{CCC}) and one out-of-plane (γ_{CO}) bending modes. However although the molecule of acetone has been investigated in some details, only the assignment of the band at 530 cm^{-1} (β_{CO}) seems out of doubt, while for the bands at 490 and 390 cm^{-1} no conclusive interpretation was reached yet (uncertainty in the countours of the i.r. vapor phase bands, and conflicting results on the depolarization degree of the Raman line at 490 cm^{-1} (11-14). It may be recalled that in acetone only the β_{CCC} mode is expected to be polarized. On the other hand, Raman results (6) for the unsubstituted acetophenone assume the line at 580 cm^{-1} to be depolarized and the line at 360 cm^{-1} polarized (no Raman line was reported around 490 cm^{-1}). On the basis of such features the band at 580 cm^{-1} , which should correspond to the absorption at 530 cm^{-1} in acetone, can be described as the β_{CO} mode and the band at 360 cm^{-1} as the β_{CCC} mode. It follows that the absorption observed in infrared at 490 cm^{-1} would be associated to the γ_{CO} vibration.

Some complexity in the spectra of 3-substituted acetophenones was also noticed. First, it was observed a medium weak absorption near 600 cm^{-1} which could not be identified. Second, the band at about 580 cm^{-1} (β_{CO}) consistently appeared in these compounds as a doublet (see table 2). Doubt remains concerning the interpretation of this fact since no further absor-

ption is expected in this range and besides, attempts to relate it to a Fermi resonance were not successful. Also the presence of two conformers having slightly different spectral features could not be proved at this stage of work: in fact the carbonyl stretching band at about 1700 cm^{-1} was found to be a singlet, and on the other side the 2-substituted acetophenones, for some of which the existence of a conformational equilibrium was established (15), do not show a similar trend unless to consider a weak band near 530 cm^{-1} .

To assign the bands related to the methoxy- and thiomethoxy- groups, the vibrational results for anisoles (16) and thioanisoles (17) were used as reference. Vibrations which can be approximately described as in-plane bending modes (β_{COC} , β_{CSC}) and torsions around the O- \emptyset and S- \emptyset bond were observed respectively in the range $260\text{--}285\text{ cm}^{-1}$ and $98\text{--}120\text{ cm}^{-1}$. The strong band at 577 cm^{-1} in the spectrum of $4\text{-CH}_3\text{O-}$ acetophenone does not appear to have any counterpart in the other derivatives and remains unassigned.

Finally the medium broad band at about 75 cm^{-1} seems not to be characteristic of acetophenones since it has been already found in the solution spectra of several series of organic compounds (2).

Following previous investigations performed in this laboratory (1-3), the spectra of ternary systems (i.e. phenol (0.5M), $X\text{-}\emptyset\text{COCH}_3$ (0.4M), CCl_4) were also examined in order to test the spectral behaviour of the H-bonded complexes as well as to establish the relative sensitivity of the hydrogen bonding stretching vibration (ν_{σ}) to the effects of the ring substituents. No major modifications in the spectra of the complexes were observed; only the band related to the β_{COCH_3} bending mode (see above) moved toward higher frequencies (the observed wavenumbers, which refer to 1:1 complexes with phenol, are reported between brackets in table 1). The ν_{σ}

values of the complexes with phenol (see table 2) although scarcely sensitive to the substituent parameter, linearly correlate with those. Relations of this type were already observed by us in other series of compounds (2, 18).

REFERENCES

1. Previous paper of this series: S. Ghersetti, S. Giorgianni, M. Minari and G. Spunta, *Spectrochim. Acta*, 31A (1975) (in the press)
2. S. Ghersetti, S. Giorgianni, A. Mangini and G. Spunta, *Spectroscopy Letters* 5 111 (1972)
3. S. Ghersetti, S. Giorgianni, P.L. Capucci and G. Spunta, *Spectrochim. Acta* 29A 1207 (1973)
4. C. Garrigou-Lagrange, N. Claverie, J.M. Lebas and M.L. Josien; *J. Chim. Phys.* 58 559 (1961)
5. J.M. Lebas, *J. Chim. Phys.* 59 1072 (1962)
6. W.D. Mross and G. Zundel, *Spectrochim. Acta* 26A 1097 (1970)
7. J.H.S. Green and D.J. Harrison, *Spectrochim. Acta* 26A 1925 (1970)
8. J.H.S. Green, *Spectrochim. Acta* 26A 1913 (1970)
9. N. Le Calvé and P. Labarbe, *Spectrochim. Acta* 26A 77 (1970)
10. G. Varsányi - "Vibrational Spectra of benzene derivatives" - Academic Press New York (1969)
11. G. Dellepiane and J. Overend, *Spectrochim. Acta* 22 593 (1966)
12. J.R. Allkins and E.R. Lippincott, *Spectrochim. Acta* 25A 761 (1969)
13. W.C. Harris and I.W. Levin, *J. Mol. Spectrosc.* 43 117 (1972)
14. T. Fujiyama and T. Shimanouchi, *Bull. Chem. Soc. Jap.* 45 1575 (1972)
15. P.J. Krueger, *Canad. J. Chem.* 51 1363 (1973)
16. N.L. Owen and R.E. Hester, *Spectrochim. Acta* 25A 343 (1969)
17. J.H.S. Green, D.J. Harrison, W. Kynaston and D.W. Scott, *Spectrochim. Acta* 26A 1515 (1970)
18. S. Ghersetti, S. Giorgianni and G. Spunta, *Spectroscopy Letters* 6 505 (1973)

Received March 20, 1975

Accepted April 7, 1975